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Heat flux at the transition from harmonic to chaotic flow in thermal convection
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Numerical simulations of the fully compressible Navier-Stokes equations are used to study the transition
from simple-periodic “harmonic” thermal convection to chaotic thermal convection as the Rayleigh number
Ra is increased. The simulations suggest that a sharp discontinuity in the relationship between the Nusselt
number Nu(the ratio of the total heat flux to the Fourier heat flaxd the Rayleigh number is associated with
this transition in flow morphology. This drop in the Nusselt number is also seen in the data reported in
independent experiments involving the convection of two characteristically different fluids—liquid mercury
[Phys. Rev. B56, R1302(1997)] (a nearly incompressible fluid with Prandtl numberPr024 and gaseous
helium [Phys. Rev. A36, 5870(1987] (a compressible fluid with unit PrThe harmonic flow generates a
dual-maximum(quasiharmonictemperature histogram, while the chaotic flow generates a single-maximum
histogram at the center point in the simulated cell. This is consistent with the temperature distributions reported
for the convecting mercury before and after the drop in Nu. Our simulations also suggest a hysteresis in the
Nu-Ra curve linking the two distinctly different flow morphologies, heat fluxes, and temperature-fluctuation
histograms at the same Rayleigh numi&1063-651X98)01909-9

PACS numbgs): 47.27.Cn, 47.27.Eq, 47.15.Fe, 05.70.Ln

I. INTRODUCTION to visualize the actual flow, as a change in the number of
convection rolls in the system.
In the well-known “Rayleigh-Beard” problem, a vis- Another set of experiments, involving the convection of

cous, heat-conducting fluid enclosed by thermal boundariegaseous heliuni7], describes transitions in the flow mor-
in a gravitational field makes a transition from quiescentPhology for Rayleigh numbers from 1@ 10". The onset
Fourier heat conduction to steady convection at a criticaPf the “oscillatory” convecting flow was reported for Ra
Rayleigh numbefRa,= 1708 with the Boussinesq approxi- =9X% 10*. The onset of the “chaotic” flow was reported for
mation [1]). The steadily convecting flow transports heatRa=1.5x 10° and continues to Ra2.5x 10°. A drop in the
more effectively. At a much higher Rayleigh number, theNusselt number is seen in the data for the transition from the
system makes a second transition, from steady convection @scillatory to chaotic flows. At much higher Rayleigh num-
time-dependent convection. The previously steady conved€rs, the “hard-turbulence” state is reached, and the scaling
tion rolls start to oscillate vertically. Observables, such as théelation Nu-1~Ra?2is reported.
heat flux and the position of the convecting rolls, vary peri- Both experiments were conducted in cylindrical vessels.
odically (harmonically in time [2,3]. Eventually, this peri- The vessel for the helium gas had an aspect ratio @oial
odic motion gives way to chaotic flow as vertical plumesheight and width The mercury experiments were conducted
start to influence the flow. Observables lose their simple timén various aspect ratio vessels, but the set of data that spans
dependence, and the flow becomes irregular. the transition from harmonic to chaotic flow was from a ves-
Experiments with thermally convecting mercury, a low- sel with an aspect ratio of @wice as wide as high
Prandtl-number fluid, reported in Ré#], show that a well-
known power law for “hard” turbulent convection, relating
the Rayleigh number to the dimensionless heat flux,
Nu~R&"", persists after the inversion of the thermal and Our simulations also reveal that a drop in the Nusselt
viscous boundary layers. Theories predicting thipower — number, as the Rayleigh number is increased, is associated
law [5,6] are based on the assumption that the thermaWwith the transition in the flow morphology from “periodic”
boundary layer is purely diffusive and confined within the to “chaotic” convection(see Fig. L Computer simulations
viscous boundary layer. The results of these experimentsffer the ability to visualize the time dependence of any vari-
contradict the basic assumption of the theories. able field, such as the temperature or velocity, in order to
An interesting feature of the reported data is a “bump” in characterize the flow. Time-averaged quantities, such as the
the Nusselt-number—Rayleigh-number relation showing thaleat flux, computed from simulations of increasing time and
the Nusselt number drops with increasing Rayleigh numberspace resolution, are used to extrapolate a value for the con-
This drop in Nusselt number is accompanied by an appareriinuum (zero-mesh limit. Steady-state convection is ob-
change in flow morphology, indicated by the temperatureserved for Rayleigh numbers up toxd0*. For slightly
fluctuation histogram at a probe fixed at the center of thereater Ra, the simple-periodic “harmonic” flow is ob-
cell. The temperature histogram goes from a dual-maximunserved. This is consistent with the results of experiments
profile before the Nusselt number drop to a single-maximunwith helium [7] and ab initio molecular dynamics simula-
profile, and has been interpreted, in the absence of the abilittjons [2]. The heat flux for this flow varies in time with a

Il. RESULTS

1063-651X/98/583)/40163)/$15.00 PRE 58 4016 © 1998 The American Physical Society



PRE 58 BRIEF REPORTS 4017

o
P(T)

' 0
3 /O 0.508

T — T/ AT
2 5 6 7 (@) “HARMONIC"
logio Ra
FIG. 1. The Nusselt number for convecting flows of various 015
Rayleigh numbers. Within the hysteretic range, two flow morpholo- 0.10
gies are possible, each corresponding to a different Rayleigh num- E '
ber. For example, at Ra2x10°, a harmonic flow with Nu 0.05
=3.392 and a chaotic flow with N&2.959 are both stable possi-
i o
bilities. 0.438 0.528 0.618
single frequency, equal to the frequency of the vertical oscil- T — Teoa/AT
lation of the rolls. This is the second characteristic frequency
(b) “TURBULENT”

of the system—the first being the frequency that a volume of
fluid travels around a convecting roll. This harmonic flow is  FiG. 2. The temperature-fluctuation histogram for a point at the
stable for 9<10*>Ra>2.4x10°. For slightly higher Ray- center of the simulated cell for th@) “harmonic” and (b) “cha-
leigh numbers, at least one additional characteristic freoptic” flows.

guency is introduced, that of cold, downward-flowing and

warm, upward-flowing plumes sweeping horizontally back

and forth. The time dependence of the heat flux for this ﬂov\}\lavier—Stokes equations for a wo-dimensional ideal gas,

is more complicated, and the time average is roughly 1004 ea~PKsT=pe, enclosed between two rigid thermal bound-

lower. This three-period flow is less efficient at transportingaries seE)r?]rate_g byt;':l dis(tjan_c,eand in th_e g_reser&cr(]e of a blo dy h
heat since the plumes disturb the opposite thermal boundaf§'c€9- The sides boundaries are periodic and have a lengt

layer and sweep material in a direction that is counter to th cale_ correspo_ndlng to a cell with an aspect ratio of 2. By
flow of heat. The maximum Lyapunov exponeffior our considering units such that the Boltzmann constant, the mean

discrete approximatignis greater for this flow, as expected denst;ty, :;md tﬁe heat Cap?‘c'g ?re jet to unltx, th‘;/ Rayleigh
for a “chaotic” system. This route to chaos, observed in ourr";]m er OL t ﬁ sys'Tem IS detine ﬁfis. Rag ;Ld 7
simulations, is consistent with Ruelle’s idea that if three in-WNerea Is the thermal expansion coefficient, anandx are

commensurate frequencies simultaneously exist in a systerﬁdhear wscoilty_?nd heat transfer coefficients. Since, for an
regular motion becomes highly unstable in favor of motion'd€@l 9as,a=T"*, and the body force can be assigned a

on a strange attractéchaotic motioh [8]. We also find that, maghnitude such .that a small volume element of fluid moving
for the two-period flow, the temperature histogram at a poinfr®™m the lower high-temperature boundary to the upper low-

in the center of the simulated cell is harmoniclike, havingi€MPerature boundary gains a potential energy to exactly
two maximum corresponding to the “turning-point” tem- compensate for the loss in thermal enefgy=kgAT/pgl

peratures. For the three-peri¢chaotio flow, the tempera- —AT/L, settingkg=po=1), the Rayleigh number can be

H 21 2
ture histogram at the same point has a single maximum in th@itten as Re AT°L%/Ty«. The Prandtl number Pithe
center of the temperature rangee Fig. 2 This is consis- ratio of the kinematic viscosity to the thermal diffusion co-

tent with the temperature histogram for turbulent flowsefficiend is set to unity. The maximum velocity of the flows
[1,2,9. were always less than half of the sound speed, so shock

The computer simulations show that chaotic flow is pos-Waves do not influence the results.
sible for Ra>1.3x 10P. This suggests that this drop in the  FOr €ach data point, the flow is allowed to develop from
Ra-Nu relation is an hysteretic link between two-peribér- the initial conditions for several thousand sound-traversal
monic and three-periodchaotid flows. It is possible that times. At t.hIS point, calculat_lons of the heat flux and tem-
two systems, with the same Rayleigh number, have differerff€rature histograms are carried out for several thousand more
flow morphologies, heat fluxe&nd NU, and temperature- sound-traversal times. To demonstrate the existence of the
fluctuation histograms. The coexistence of different flow"YSteresis, the initial state of a run is set to a state of the

morphologies at the same Rayleigh number has been Seenwgll-developed flow of a ruon with a Rayleigh number t.hat is
simulations of compressible fluid&0], and using the Bouss- different by 5000(about 3% of the range The Rayleigh

inesq approximation of a convecting systei]. number is. \{aried in_this study by changing eit.her the trans-
port coefficients(which also varies the diffusion-traversal

times, the mean temperatuf@hich also varies the sound-

traversal time and the thermal expangia the length scale
The method used to study the transition to turbulent con{which varies the diffusion- and sound-traversal tijnda

vection involves numerically solving the fully compressible each case, the results are qualitatively the same. The stability
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of the well-developed flows is tested by introducing a ran-behaviors in all three situations have a common
dom noise with a magnitude equal to roughly 10% of thecharacteristic—a drop in the heat flux as the system makes
mean value of each state variable, and allowing the system tine transition to chaotic flow.

continue to develop. The stability test demonstrates that two Since the Nusselt number is identically equal to the di-
stable, but different, flows are possible for the same Rayleigimensionless entropy production of the system, the results

number in this range. suggest that this dynamical system, driven farther from equi-
librium, has a sudden drop in the entropy production as it
V. CONCLUSIONS makes a transition to chaos. The maximum Lyapunov expo-

) ) o nent for the simulation is a measure of the rate at which

Although our simulations are not an explicit attempt t0 yhase-space information is lost. The drop in entropy produc-
model the experiments with convecting mercury or heliumyion for the system at the transition is accompanied by a
the character of the results is very similar. Since the simulagorresponding increase in this rate of information loss.
tions use an ideal gas equation of state, model a compressible
fluid, and have a unit Prandlt number, it is a fair model for
the helium gas experiment. On the other hand, the simula- ACKNOWLEDGMENTS
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